

MATERIAL DATA SHEET

FDM Nylon 12CF

FDM Thermoplastic Filament

The information presented are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes.

Overview

FDM® Nylon 12CF™ is a PA12 (polyamide 12) thermoplastic filament reinforced with chopped carbon fiber, 35% by weight. It has the highest flexural strength of any FDM thermoplastic, resulting in the highest stiffness-to-weight ratio. The combination of high strength, stiffness and light weight makes it an optimal replacement for heavier metal components in appropriate use cases.

Typical applications include strong, lightweight tooling, functional prototyping, and select end-use parts.

Contents:

Overview	2
Ordering Information	3
Physical Properties	4
Mechanical Properties	5
Mechanical Performance with Unidirectional Toolpaths	11
UV Aging	12
Performance at Temperature	12
Appendix	13

Ordering Information

Table 1: Printer and Support Material Compatibility

Printer	Model Tip	Layer Height	Support Material	Support Tip
F . 450 W	T20C	0.254 mm (0.010 in.)	SR-110™	T12SR100
Fortus 450mc™	T40C	0.508 mm (0.020 in.)	5K-110	T20
F900®	T20C	0.254 mm (0.010 in.)	CD 110	T12SR100
F900°	T40C	0.508 mm (0.020 in.)	SR-110	T20
E3300™	N500H	0.25 mm (0.010 in.)	OD 110	N410
F3300™	N750H	0.50 mm (0.020 in.)	SR-110	N750

Build Sheet

Fortus Nylon Build Sheet

- 0.51 x 660 x 965 mm (0.02 x 26 x 38 in.)
- 0.51 x 406 x 470 mm (0.02 x 16 x 18.5 in.)

F3300 Nylon Build Sheet

• 0.51 x 660 x 711 mm (0.02 x 26 x 28 in.)

System Requirements¹

Fortus® 450mc

- · Hardened machine upgrade
- · Hardened Fortus 450mc head
- Nylon 12CF material license (included if new system)
- Fortus FDC™ (enables use of XTEND™ 250 Fortus® Plus spool)

F900

- Hardened F900 head
- · Nylon 12CF material license
- Fortus FDC (enables use of XTEND™ 250 Fortus® Plus spool)

F3300

- F3000 Series Extruder Drive
- · Hardened Hot End
- · No material license required

Table 2: FDM Nylon 12CF Ordering Information

Part Number	Description	System Compatibility
Filament Consumables		
Fortus Plus Canister (black snout)		
355-02411	FDM Nylon 12CF, 92.3 cu in Plus	Fortus 450mc, F900
355-03130	SR-110 Soluble Support, 92.3 cu in Plus	Fortus 430mc, F900
Fortus Plus Spools		
361-00300	XTEND™ 250 Fortus® Plus Nylon 12CF	Fortus 450mc and F900 with the Fortus FDC
F3000 Series Spools		
363-00300	MTRL, F3000 Series, (M), Nylon 12CF, 4100cc	F3300
363-00710	MTRL, F3000 Series, (S), SR-110, 4100cc	r3300

¹ Contact your Stratasys representative for ordering information.

Part Number	Description	System Compatibility
Printer Consumables		
Fortus		
511-10720	TIP, FDM, T20C, 0.010 in. (0.254 mm) layer height	
511-10100	TIP, FDM, T12SR100, 0.010 in. (0.254 mm) layer height	
511-10760	TIP, FDM, T40C, 0.020 in. (0.508 mm) layer height	Fortus 450mc, F900
511-10701	TIP, FDM, T20 ² , 0.020 in. (0.508 mm) layer height	
325-00750-S	Nylon build sheet, 0.02 x 16 x 18.5 in. (0.51 x 406 x 470 mm), 20 pack	
325-00650-S	Nylon build sheet, 0.02 x 26 x 38 in. (0.51 x 660 x 965 mm), 10 pack	F900
F3000 Series		
533-00505-S	Hardened Hot End, FDM, N500H (0.25 mm/0.010 in. layer height)	
533-00410-S	Hot End, FDM, N410 Support (0.25 mm/0.010 in. layer height)	
533-00755-S	Hardened HOT END, FDM, N750H (0.50 mm/0.020 in. layer height)	F3300
533-00750-S	Hot End, FDM, N750 Support (0.50 mm/0.020 in. layer height)	
363-30100-S	F3300 sheet bundle, Nylon 0.02 x 26 x 28 in., 10 pack	
Print Heads		
Fortus		
821726-XXXX	Hardened Fortus 450mc head (blue handle)	Fortus 450mc
380-30400-S	OpenAM Hardened Fortus 450mc head (blue handle, additional sticker)	FOILUS 450ITIC
325-63500	Hardened F900 head (folded sheet metal handle)	F900
325-63500-S	OpenAM Hardened F900 head (folded sheet metal handle, additional sticker)	F 7 00
F3000 Series		
533-10000-S	F3000 Series Extruder Drive	F3300

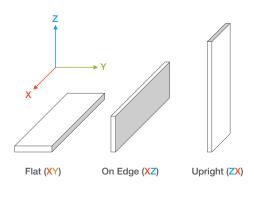
 $^{^2}$ The T20 tip is for 0.508 mm (0.020 in.) support material and should not be confused with the T20C 0.254 mm (0.010 in.) model material tip.

Physical Properties

Values are measured as printed. XY and ZX orientations were tested. For full details refer to the <u>Stratasys Materials</u> <u>Test Procedure</u>. DSC and TMA curves can be found in the Appendix.

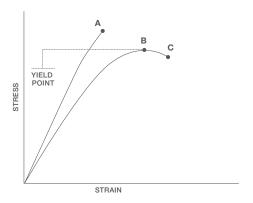
Table 3: FDM Nylon 12CF Physical Properties

Droporty	To as Marshaul	Typical	Values
Property	Test Method	XY	ZX
HDT @ 66 psi	ASTM D648 Method B	160 °C (320 °F)	168 °C (334 °F)
HDT @ 264 psi	ASTM D648 Method B	130 °C (266 °F)	154 °C (309 °F)
Unidirectional Toolpaths HDT @ 66 psi	ASTM D648	175 °C (347 °F)	-
Unidirectional Toolpaths HDT @ 264 psi	ASTM D648	157 °C (315 °F)	-
Tg	ASTM D7426 Inflection Point	37.5 °C (99.5 °F)
Mean CTE	ASTM E831 (-50 °C to 20 °C)	115.7 μm/[m*°C] (67.28 μin/[in*°F])	37.31 μm/[m*°C] (20.73 μin/[in*°F])
Mean CTE	ASTM E831 (20 °C to 60 °C)	180.5 μm/[m*°C] (100.3 μin/[in*°F])	-
Mean CTE	ASTM E831 (60 °C to 115 °C)	195.8 μm/[m*°C] (108.8 μin/[in*°F])	-
Mean CTE	ASTM E831 (115 °C to 150 °C)	296.5 μm/[m*°C] (164.7 μin/[in*°F])	-
Mean CTE	ASTM E831 (20 °C to 105 °C)	-	46.15 μm/[m*°C] (25.64 μin/[in*°F])
Mean CTE	ASTM E831 (105 °C to 150 °C)	-	58.43 µm/[m*°C] (32.46 µin/[in*°F])
Volume Resistivity	ASTM D257	2.84*10	⁷ Ω*cm
Dielectric Constant	ASTM D150 1 kHz test condition	Too con	ductive


Property Test Method	Typical Va	alues	
Property	rest Method	XY	ZX
Dielectric Constant	ASTM D150 2 MHz test condition	11.4	10.0
Dissipation Factor	ASTM D150 1 kHz test condition	Too condu	ctive
Dissipation Factor	ASTM D150 2 MHz test condition	0.100	0.000
Thermal Conductivity	ASTM E1952 @0 °C	0.5884 W/ 0.3400 BTU/(
Thermal Conductivity	ASTM E1952 @30 °C	0.5988 W/m*K 0.3460 BTU/(hr*ft°F)	
Thermal Conductivity	ASTM E1952 @60 °C	0.5800 W/m*K 0.3352 BTU/(hr*ft°F)	
Thermal Conductivity	ASTM E1952 @90 °C	0.6153 W/m*K 0.3556 BTU/(hr*ft°F)	
Thermal Diffusivity	ASTM E1952 @0 °C	0.363 mm²/s 5.63*10 ⁻⁴ in²/s	
Thermal Diffusivity	ASTM E1952 @30 °C	0.324 mm²/s 5.02*10 ⁻⁴ in²/s	
Thermal Diffusivity	ASTM E1952 @60 °C	0.266 mm²/s 4.12*10⁴ in²/s	
Thermal Diffusivity	ASTM E1952 @90 °C	0.255 mm²/s 3.95*10 ⁻⁴ in²/s	
Specific Gravity	ASTM D257 @23 °C	1.190	

Mechanical Properties

FDM Nylon 12CF samples were printed with 0.25 mm (0.010 in.) and 0.50 mm (0.020 in.) layer heights on the F900, Fortus 450mc, and F3300. For the full test procedure please see the <u>Stratasys Materials Test Procedure</u>.


Print Orientation

Parts created using FDM are anisotropic as a result of the printing process. Below is a reference of the different orientations used to characterize the material.

Tensile Curves

Due to the anisotropic nature of FDM, tensile curves look different depending on orientation. Below is a guide of the two types of curves seen when printing tensile samples and what reported values mean.

- A = Tensile at break, elongation at break (no yield point)
- B = Tensile at yield, elongation at yield
- C = Tensile at break, elongation at break

Table 4: FDM Nylon 12CF Mechanical Properties - F900 - T20C tip

0.25 mm (0.010 in.) Layer Height		XZ Orientation ¹	ZX Orientation ¹
Tensile Properties: ASTM D638			
Yield Strength	MPa	No yield	No yield
Held Strength	psi	No yield	No yield
Elongation @ Yield	%	No yield	No yield
Strength @ Break	MPa	83.5 (1.7)	32.7 (3.5)
Strength @ Dreak	psi	12,100 (250)	4,750 (510)
Elongation @ Break	%	2.4 (0.29)	1.2 (0.27)
Modulus (Elastic)	GPa	9.46 (0.46)	3.00 (0.43)
Modulus (Liastic)	ksi	1,370 (67)	434 (63)
Flexural Properties: ASTM D790, Pro	ocedure A		
Strength @ Break	MPa	153 (2.1)	62.4 (3.4)
Strength @ Dreak	psi	22,200 (310)	9,080 (490)
Strain @ Break	%	2.65 (0.086)	3.10 (0.26)
Modulus	GPa	11.1 (0.28)	2.34 (0.085)
Modulus	ksi	1,610 (40)	339 (12)
Compression Properties: ASTM D69	5		
Yield Strength	MPa	110 (3.0)	141 (2.6)
rieiu Stierigtii	psi	16,000 (440)	20,400 (380)
Modulus	GPa	6.78 (0.55)	3.67 (0.11)
Modulus	ksi	984 (79)	532 (16)
Impact Properties: ASTM D256, ASTM D4812			
Notched	J/m	106 (6.6)	24 (3.2)
Notorieu	ft*lb/in	1.99 (0.12)	0.45 (0.060)
Unnotahad	J/m	346 (40)	121 (18)
Unnotched	ft*lb/in	6.48 (0.74)	2.27 (0.33)

 $^{^{\}rm 1}\mbox{Values}$ in parentheses are standard deviations.

T40C Tensile Part Processing: XZ tensile coupon printed dimensions were 165 x 22 x 5 mm ($6.500 \times 0.875 \times 0.200 \text{ in.}$). ZX tensile coupons were precision-cut via water jet machining from larger printed plaques to produce final coupon dimensions of 165 x 22 x 5 mm ($6.500 \times 0.875 \times 0.200 \text{ in.}$). XZ and ZX tensile coupons were then tested using the standard D638 procedure, including coupon conditioning and pulling.

T40C Flexural Part Processing: XZ flexural coupon printed dimensions were 165 x 12.7 x 5 mm ($6.500 \times 0.500 \times 0.200 \times 0.200$

Table 5: Nylon 12CF Mechanical Properties - F900 - T40C tip

-	-	<u> </u>		
0.50 mm (0.020 in.) Layer Height		XZ Orientation ¹	ZX Orientation ¹	
Tensile Properties: Modified ASTM	Tensile Properties: Modified ASTM D638			
Viold Ctron with	MPa	107.9 (5.3)	36.2 (1.4)	
Yield Strength	psi	15,600 (800)	5,200 (200)	
Elongation @ Yield	%	1.9 (0.2)	2.9 (0.4)	
Strength @ Break	MPa	106.7 (4.9)	36.0 (1.5)	
Stierigti (@ bleak	psi	15,500 (700)	5,200 (200)	
Elongation @ Break	%	1.9 (0.2)	2.9 (0.4)	
Modulus (Elastic)	GPa	12.7 (0.5)	2.13 (0.07)	
Modulus (Elastic)	ksi	1,840 (80)	310 (10)	
Flexural Properties: Modified AST	M D790, Procedure A			
Strongth @ Brook	MPa	187.4 (4.9)	64.7 (2.1)	
Strength @ Break	psi	27,200 (700)	9,400 (300)	
Strain @ Break	%	2.4 (0.2)	4.0 (0.3)	
Modulus	GPa	12.5 (0.3)	2.30 (0.07)	
Modulus	ksi	1,820 (40)	330 (10)	

 $^{^{\}rm 1}\mbox{Values}$ in parentheses are standard deviations.

Table 6: Nylon 12CF Mechanical Properties - F3300 - N500H Hot End

0.25 mm (0.010 in.) Layer Height		XZ Orientation ¹	ZX Orientation ¹
Tensile Properties: ASTM D638			
Yield Strength	MPa	107 (2.6)	36.6 (2.2)
Heiu Stierigtii	psi	15,500 (370)	5,310 (320)
Elongation @ Yield	%	2.6 (0.18)	2.1 (0.17)
Strength @ Break	MPa	107 (2.6)	36.7 (2.1)
Strength (w break	psi	15,500 (380)	5,330 (310)
Elongation @ Break	%	2.6 (0.19)	2.1 (0.17)
Modulus (Elastic)	GPa	12.1 (0.36)	2.6 (0.073)
Modulus (Clastic)	ksi	1,760 (53)	377 (11)
Flexural Properties: ASTM D790, P	rocedure A		
Strength @ Break	MPa	197 (4)	72.7 (4.7)
Strength (b) break	psi	28,500 (580)	10,500 (680)
Strain @ Break	%	2.8 (0.085)	3.9 (0.35)
Modulus	GPa	13.4 (0.57)	2.26 (0.1)
Modulus	ksi	1,940 (83)	328 (15)
Compression Properties: ASTM D695			
Peak Strength	MPa	109 (12)	129 (4.3)
reak suengui	psi	15,700 (1,700)	18,700 (620)
Modulus	GPa	3.37 (0.21)	2.63 (0.13)
Modulus	ksi	489 (30)	382 (18)
Impact Properties: ASTM D256, ASTM D4812			
Notched	J/m	138 (7)	45.5 (73)
Notoned	ft*lb/in	2.58 (0.13)	0.852 (1.4)
Unnotched	J/m	1,030 (93)	139 (23)
Onnotcheu	ft*lb/in	19.3 (1.7)	2.61 (0.43)

 $^{^{\}rm 1}\mbox{Values}$ in parentheses are standard deviations.

Table 7: FDM Nylon 12CF Mechanical Properties - Fortus 450mc - T20C tip

0.25 mm (0.010 in.) Layer Height		XZ Orientation ¹	ZX Orientation ¹
Tensile Properties: ASTM D638			
Tensile Properties. AS TW 0036	MD-	77.5 (0.4)	20.2 (1.6)
Yield Strength	MPa	77.5 (2.4)	38.3 (1.6)
	psi	11,200 (350)	5,500 (230)
Elongation @ Yield	%	3.1 (0.2)	2.2 (0.17)
Strength @ Break	MPa	76.5 (3.5)	38.4 (1.5)
	psi	11,100 (500)	5,570 (220)
Elongation @ Break	%	3.2 (0.28)	2.2 (0.16)
Modulus (Elastic)	GPa	7.91 (0.31)	2.64 (0.078)
medalas (Liaslis)	ksi	1,150 (45)	384 (11)
Flexural Properties: ASTM D790, F	Procedure A		
Character C Brook	MPa	152 (3.8)	67.4 (3.5)
Strength @ Break	psi	22,100 (550)	9,770 (510)
Strain @ Break	%	2.7 (0.1)	3.6 (0.23)
Modulus	GPa	11 (0.26)	2.18 (0.11)
Modulus	ksi	1,600 (38)	317 (16)
Compression Properties: ASTM D695			
Dools Characterist	MPa	105 (5.4)	135 (3.5)
Peak Strength	psi	15,200 (780)	19,600 (510)
Madelina	GPa	2.73 (0.33)	2.44 (0.13)
Modulus	ksi	397 (48)	354 (19)
Impact Properties: ASTM D256, ASTM D4812			
Notched	J/m	102 (3.8)	22.4 (2.2)
Notched	ft*lb/in	1.91 (0.071)	0.42 (0.041)
Unretched	J/m	619 (58)	125 (12)
Unnotched	ft*lb/in	11.6 (1.1)	2.35 (0.22)

¹ Values in parentheses are standard deviations.

T40C Tensile Part Processing: XZ tensile coupon printed dimensions were 165 x 22 x 5 mm ($6.500 \times 0.875 \times 0.200 \text{ in.}$). ZX tensile coupons were precision-cut via water jet machining from larger printed plaques to produce final coupon dimensions of 165 x 22 x 5 mm ($6.500 \times 0.875 \times 0.200 \text{ in.}$). XZ and ZX tensile coupons were then tested using the standard D638 procedure, including coupon conditioning and pulling.

T40C Flexural Part Processing: XZ flexural coupon printed dimensions were $165 \times 12.7 \times 5 \text{ mm}$ ($6.500 \times 0.500 \times 0.200 \text{ in.}$). ZX flexural test coupons were precision-cut via water jet machining from larger printed plaques to produce final coupon dimensions of $165 \times 12.7 \times 5 \text{ mm}$ ($6.500 \times 0.500 \times 0.20 \text{ in.}$). XZ and ZX flexural coupons were then tested using the standard D790 procedure, including coupon conditioning.

Table 8: FDM Nylon 12CF Mechanical Properties - Fortus 450mc - T40C tip

0.50 mm (0.020 in.) Layer Height		XZ Orientation ¹	ZX Orientation ¹	
	Tensile Properties: Modified ASTM D638			
	MPa	124 (8)	38.3 (2.2)	
Yield Strength	psi	17,900 (1,200)	5,550 (310)	
Elongation @ Yield	%	2 (0.21)	2.7 (0.34)	
Chromath & Brook	MPa	124 (6.6)	38.1 (2.3)	
Strength @ Break	psi	18,000 (960)	5,530 (330)	
Elongation @ Break	%	2 (0.18)	2.7 (0.35)	
Modulus (Elastic)	GPa	15.4 (1.3)	2.38 (0.069)	
Modulus (Elastic)	ksi	2,230 (190)	345 (10)	
Flexural Properties: Modified AST	M D790, Procedure A			
Chromath C Book	MPa	200 (9.7)	61.1 (2.8)	
Strength @ Break	psi	28,900 (1,400)	8,860 (410)	
Strain @ Break	%	2.7 (0.17)	3.5 (0.32)	
Modulus	GPa	13.5 (1.2)	2.25 (0.039)	
Modulus	ksi	1,950 (170)	327 (5.7)	

¹ Values in parentheses are standard deviations.

Mechanical Performance with Unidirectional Toolpaths

The Stratasys typical testing procedure follows our default "45/-45" raster toolpath generation where the first raster layer is 45° in the XY plane and the next layer is perpendicular to that (-45°). The data in this section has unidirectional toolpaths, where all toolpaths are aligned in the XY plane and along the axis for the mechanical test. This method of optimizing toolpaths is appropriate to show the maximum strength for filled materials, but should be used with caution as it is not representative of typical part toolpaths and strength. For further information on this test method, refer to the <u>Stratasys Materials Testing Procedure</u> and the <u>Unidirectional Material Testing May Mislead Manufacturing</u> white paper.

Table 9: FDM Nylon 12CF Mechanical Properties with Unidirectional Toolpaths - F900 - T20C

0.25 mm (0.010 in.) Layer Height		XY Orientation ¹
Tensile Properties: ASTM D638		
Viald Changeth	MPa	No Yield
Yield Strength	psi	No Yield
Elongation @ Yield	%	No Yield
Strength @ Break	MPa	111 (1.6)
Strength (b) break	psi	16,100 (240)
Elongation @ Break	%	1.6 (0.08)
Modulus (Elastic)	GPa	15.1 (0.15)
Modulus (Elastic)	ksi	2,180 (21)
Flexural Properties: ASTM D790, Procedure B		
Strength @ Break	MPa	183 (2.2)
Sueligui @ Bleak	psi	26,600 (320)
Strain @ Break	%	2.4 (0.7)
Modulus	GPa	11.9 (0.11)
Modulus	ksi	1,730 (16)
Impact Properties: ASTM D256		
Notched	J/m	122 (3.1)
Notched	ft*lb/in	2.28 (0.058)

¹ Values in parentheses are standard deviations.

UV Aging

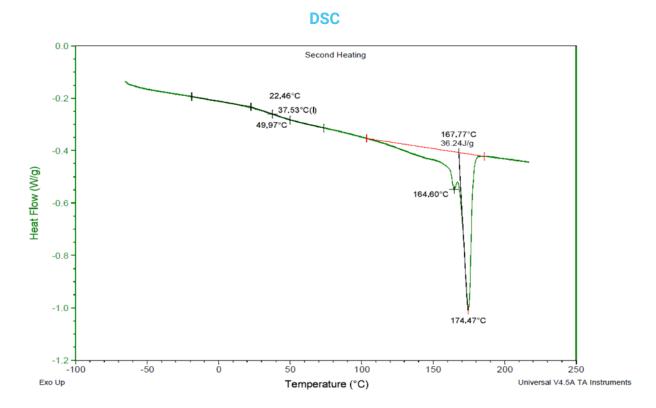
Nylon 12CF coupons were built on the F900 using the T20C tip with 0.254 mm (0.010 in.) layer height. The coupons were then tested before and after UV exposure. Ten ASTM D638 upright (ZX) coupons were tested in tensile after UV exposure and an additional 10 ASTM D638 ZX coupons were the control (no UV exposure). The UV exposed samples were cycled in the QUV chamber per ASTM G154 (Standard Practice for Operation Fluorescent UV Light Apparatus for Exposure of Nonmetallic Materials) for 1,000 hours, alternating for eight hours at 60 °C (140 °F) and four hours at 50 °C (122 °F) with humidity and condensation. The increase in stress at break is from the control samples. For more information see the Impact of UV Exposure on FDM 3D Printing Materials white paper.

Table 10: Nylon 12CF UV Exposure Test Results - F900 - T20C tip

Material	Conditioning	Yield Strength		Stress at Break		Elongation at Break	Increase in Stress at Break	Modulus	
		(psi)	(MPa)	(psi)	(MPa)	%	%	(ksi)	(GPa)
Nylon 12CF	No UV Exposure	4,760	32.8	4,720	32.5	1.7	-	361	2.49
	UV Exposure	6,500	44.8	6,460	44.5	2.2	36.80	421	2.9

Performance at Temperature

Nylon 12CF coupons were built on the F900 using the T20C tip with 0.254 mm (0.010 in.) layer height and tested at various temperatures. Ten ASTM D638 upright (ZX) coupons were tested in tensile. The percent change from the reported room temperature results are listed below. For more information see the Impact of Temperature on High-Performance FDM Materials white paper.


Table 11: Performance of FDM Nylon 12CF at Temperature - F900 - T20C tip

Material	Tempo (°F)	erature (°C)	Strength at Break	Elongation at Break	Modulus
	-65	-54	176%	60%	126%
	-40	-40	160%	57%	128%
Nulan 1905	110	43	95%	77%	80%
Nylon 12CF	180	82	66%	173%	41%
	220	104	50%	223%	30%
	270	132	34%	257%	21%

Appendix

Figure 1: 2nd heating scan DSC data for the Nylon 12CF Flat (XY) sample.

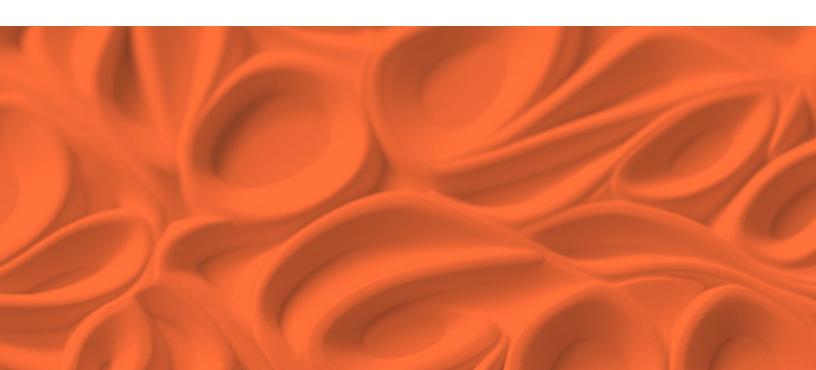


Figure 2: Dimension change data as a function of temperature for the Nylon 12CF Flat (XY) sample.

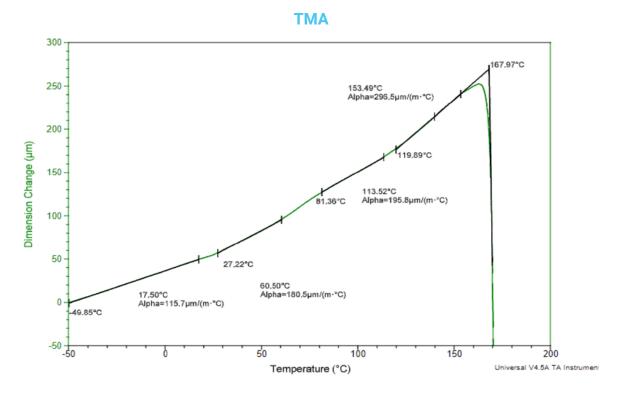


Figure 3: Dimension change data as a function of temperature for the Nylon 12CF On Edge (XZ) sample.

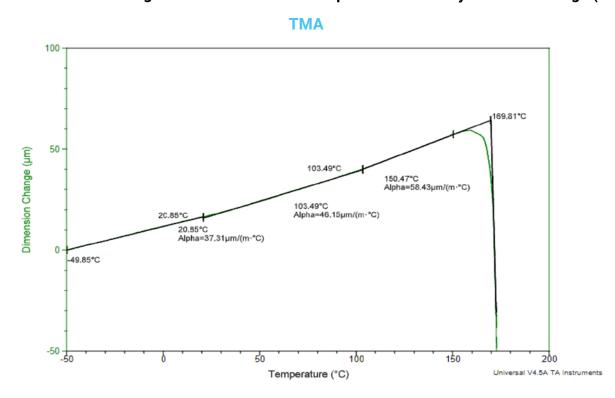
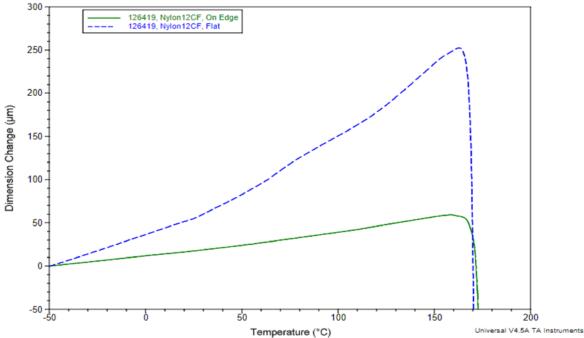



Figure 4: Overlay of the dimension change data for the Flat (XY) and On Edge (XZ) Nylon 12CF samples.

stratasys.com ISO 9001:2015 Certified

Stratasys Headquarters

5995 Opus Parkway, Minnetonka, MN 55343

- +1 800 801 6491 (US Toll Free)
- +1 952 937-3000 (Intl)
- +1 952 937-0070 (Fax)

1 Holtzman St., Science Park, PO Box 2496 Rehovot 76124, Israel +972 74 745 4000 +972 74 745 5000 (Fax)

MATERIAL DATA SHEET FDM

© 2025 Stratasys. All rights reserved. Stratasys, the Stratasys Signet logo, FDM, F900, XTEND, and Fortus are registered trademarks of Stratasys Inc. FDM Nylon 12CF, SR-110, Fortus 450mc and Fortus 900mc are trademarks of Stratasys, Inc. All other trademarks are the property of their respective owners, and Stratasys assumes no responsibility with regard to the selection, performance, or use of these non-Stratasys products. Product specifications subject to change without notice. MDS_FDM_Nylon 12CF_0925a